Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Aging Cell ; 21(3): e13545, 2022 03.
Article in English | MEDLINE | ID: covidwho-1741316

ABSTRACT

Frailty affects the physical, cognitive, and social domains exposing older adults to an increased risk of cardiovascular disease and death. The mechanisms linking frailty and cardiovascular outcomes are mostly unknown. Here, we studied the association of abundance (flow cytometry) and gene expression profile (RNAseq) of stem/progenitor cells (HSPCs) and molecular markers of inflammaging (ELISA) with the cardiorespiratory phenotype and prospective adverse events of individuals classified according to levels of frailty. Two cohorts of older adults were enrolled in the study. In a cohort of pre-frail 35 individuals (average age: 75 years), a physical frailty score above the median identified subjects with initial alterations in cardiorespiratory function. RNA sequencing revealed S100A8/A9 upregulation in HSPCs from the bone marrow (>10-fold) and peripheral blood (>200-fold) of individuals with greater physical frailty. Moreover higher frailty was associated with increased alarmins S100A8/A9 and inflammatory cytokines in peripheral blood. We then studied a cohort of 104 more frail individuals (average age: 81 years) with multidomain health deficits. Reduced levels of circulating HSPCs and increased S100A8/A9 concentrations were independently associated with the frailty index. Remarkably, low HSPCs and high S100A8/A9 simultaneously predicted major adverse cardiovascular events at 1-year follow-up after adjustment for age and frailty index. In conclusion, inflammaging characterized by alarmin and pro-inflammatory cytokines in pre-frail individuals is mirrored by the pauperization of HSPCs in frail older people with comorbidities. S100A8/A9 is upregulated within HSPCs, identifying a phenotype that associates with poor cardiovascular outcomes.


Subject(s)
Alarmins , Frailty , Aged , Calgranulin A/genetics , Calgranulin A/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Cytokines/metabolism , Frailty/genetics , Hematopoietic Stem Cells/metabolism , Humans , Prospective Studies
2.
Sci Rep ; 11(1): 16212, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1351976

ABSTRACT

During 2020, understanding the molecular mechanism of SARS-CoV-2 infection (the cause of COVID-19) became a scientific priority due to the devastating effects of the COVID-19. Many researchers have studied the effect of this viral infection on lung epithelial transcriptomes and deposited data in public repositories. Comprehensive analysis of such data could pave the way for development of efficient vaccines and effective drugs. In the current study, we obtained high-throughput gene expression data associated with human lung epithelial cells infected with respiratory viruses such as SARS-CoV-2, SARS, H1N1, avian influenza, rhinovirus and Dhori, then performed comparative transcriptome analysis to identify SARS-CoV-2 exclusive genes. The analysis yielded seven SARS-CoV-2 specific genes including CSF2 [GM-CSF] (colony-stimulating factor 2) and calcium-binding proteins (such as S100A8 and S100A9), which are known to be involved in respiratory diseases. The analyses showed that genes involved in inflammation are commonly altered by infection of SARS-CoV-2 and influenza viruses. Furthermore, results of protein-protein interaction analyses were consistent with a functional role of CSF2 and S100A9 in COVID-19 disease. In conclusion, our analysis revealed cellular genes associated with SARS-CoV-2 infection of the human lung epithelium; these are potential therapeutic targets.


Subject(s)
Alveolar Epithelial Cells/metabolism , COVID-19/genetics , Transcriptome , Alveolar Epithelial Cells/virology , COVID-19/metabolism , COVID-19/virology , Calgranulin A/genetics , Calgranulin A/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , SARS-CoV-2/pathogenicity
3.
FASEB J ; 35(9): e21798, 2021 09.
Article in English | MEDLINE | ID: covidwho-1334263

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic threatens human species with mortality rate of roughly 2%. We can hardly predict the time of herd immunity against and end of COVID-19 with or without success of vaccine. One way to overcome the situation is to define what delineates disease severity and serves as a molecular target. The most successful analogy is found in BCR-ABL in chronic myeloid leukemia, which is the golden biomarker, and simultaneously, the most effective molecular target. We hypothesize that S100 calcium-binding protein A8 (S100A8) is one such molecule. The underlying evidence includes accumulating clinical information that S100A8 is upregulated in severe forms of COVID-19, pathological similarities of the affected lungs between COVID-19 and S100A8-induced acute respiratory distress syndrome (ARDS) model, homeostatic inflammation theory in which S100A8 is an endogenous ligand for endotoxin sensor Toll-like receptor 4/Myeloid differentiation protein-2 (TLR4/MD-2) and mediates hyper-inflammation even after elimination of endotoxin-producing extrinsic pathogens, analogous findings between COVID-19-associated ARDS and pre-metastatic lungs such as S100A8 upregulation, pulmonary recruitment of myeloid cells, increased vascular permeability, and activation coagulation cascade. A successful treatment in an animal COVID-19 model is given with a reagent capable of abrogating interaction between S100A8/S100A9 and TLR4. In this paper, we try to verify our hypothesis that S100A8 governs COVID-19-associated ARDS.


Subject(s)
COVID-19/complications , Calgranulin A/physiology , Cytokine Release Syndrome/etiology , Inflammation/etiology , Pandemics , Respiratory Distress Syndrome/etiology , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , Animals , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/pathology , Calgranulin A/blood , Calgranulin A/genetics , Chemokine CXCL11/blood , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Disaccharides/pharmacology , Disaccharides/therapeutic use , Disease Models, Animal , Drug Discovery , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Inflammation/genetics , Inflammation/pathology , Lung/metabolism , Lung/pathology , Lung/virology , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lymphocyte Antigen 96/physiology , Macaca mulatta , Mice , Mice, Transgenic , Models, Biological , Mutation , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/metabolism , Species Specificity , Sugar Phosphates/pharmacology , Sugar Phosphates/therapeutic use , Toll-Like Receptor 4/physiology , Up-Regulation , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL